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Abstract 

We report on the automatic alignment of a transmission electron microscope equipped with an orbital 

angular momentum sorter using a convolutional neural network. The neural network is able to control all 

relevant parameters of both the electron-optical setup of the microscope and the external voltage source 

of the sorter without input from the user. It can compensate for mechanical and optical misalignments of 

the sorter, in order to optimize its spectral resolution. The alignment is completed over a few frames and 

can be kept stable by making use of the fast fitting time of the neural network. 

 

1-Introduction 

Ever since the first electron microscope was built by Knoll and Ruska (Knoll & Ruska, 1932; Ruska, 1987), 

transmission electron microscopes (TEMs) have evolved considerably. Even in their simpler realizations, 

they contain at least 10 lenses, 3 or more detectors and several apertures, which may be motorized. 

However, microscope alignment, which is required at the beginning of each experimental session, is still 

carried out primarily by the operator using the instrument control software. Furthermore, the advances 

that have resulted from the introduction of spherical aberration correctors (Maximilian Haider et al., 1998; 

M. Haider et al., 1998; Krivanek et al., 1999), chromatic aberration correctors (Haider et al., 2008; Kabius et 

al., 2009) and monochromators (Tiemeijer, 1999; Krivanek et al., 2014; Morishita et al., 2016; Lopatin et al., 

2018), which led to sub-atomic-resolution imaging, have further increased the complexity of such 

instruments. Their performance therefore still relies on the operators, making their skills a key factor during 

experiments. Beside the instrument itself, experiments are also becoming more complex, demanding a high 

level of understanding and control of the system. An example of this challenge is illustrated by electron 

beam shaping, a rapidly advancing field in electron microscopy that aims to provide control over the 

electron beam wave function using amplitude or phase plates. These amplitude or phase plates are 

normally fabricated using material-based holograms (Béché et al., 2014; Grillo et al., 2014, 2015; Mafakheri 

et al., 2017; Béché et al., 2017), but in recent years microelectromechanical systems technology 

(MEMS)(Verbeeck et al., 2018; Thakkar et al., 2020; Tavabi et al., 2020, 2021) has been used. The latter 

devices can contain electrostatic elements such as needles, toroids or spirals, whose electric fields directly 

affect the electrons in the beam. By using a suitable distribution of electrostatic elements and stacking 

multiple phase plates, it is possible to impart almost any desired phase distribution to an electron beam 

(Ruffato et al., 2021). An advantage of using MEMS technology is the ability to change the strength of each 

electrostatic element in operando, in effect creating a programmable phase plate. Such concepts are often 

inspired by light optics, where their implementation is easier and more reliable, for example by using 



spatial light modulators. Recent developments in programmable structured light sources using molecular 

arrays (Coles et al., 2013) and plasmonic metasurfaces (Karimi et al., 2014; Pu et al., 2015) are further 

promoting the concept of tailored illumination. MEMS technology promises to make such concepts viable 

and accessible in electron microscopy, albeit at the cost of system complexity. 

The complexity of electron columns and novel experimental setups is resulting in an ever higher demand 

for automation and instrument control, which is crucial to increase the speed, efficiency and reproducibility 

of electron optical alignment and to reduce the demand on the operator. Aberration correctors are 

currently controlled using semi-analytical models (Zemlin et al., 1978; Dellby et al., 2001; Sawada et al., 

2008; Lupini et al., 2010). However, such models are not usually available for unconventional optics used in 

electron beam shaping. A more general approach is therefore required for microscope control. Recent 

advances in artificial intelligence (AI) in the automation field may be the answer for a general approach for 

experiments. They have prompted us to develop a convolution neural network (CNN) that can aid us in 

diagnosing an orbital angular momentum (OAM) sorter for electron vortex beams (Rotunno et al., 2021), 

but can be generalized for more complex systems such as full electron microscopes. 

Electron vortex beams (EVBs) have phase singularities, around which the probability current density swirls. 

They possess OAM and can be used for contrast enhancement, to study magnetic materials and to probe 

the chirality of plasmons (Harris et al., 2015; McMorran, Agrawal, et al., 2017; Bliokh et al., 2017; Larocque 

et al., 2018; Shiloh et al., 2019). The generation of EVBs and the measurement of an electron beam’s OAM 

are equally important. Although some methods can be used for both purposes (Saitoh et al., 2013; 

Guzzinati et al., 2014), in recent years many research groups have shifted their focus towards finding ways 

to measure OAM, since it provides a further parameter to characterize a specimen. Most methods provide 

a good estimate of OAM (Schattschneider et al., 2012; Clark et al., 2014; Verbeeck et al., 2014; Clark et al., 

2016; Harvey et al., 2017; Kramberger et al., 2019; Larocque et al., 2016), but suffer from limitations since 

they do not decouple azimuthal and radial degrees of freedom. 

An electron OAM sorter makes use of electron beam shaping to measure an electron beam’s components 

of OAM in the propagation direction by decoupling the azimuthal and radial degrees of freedom of the 

electron beam. It also provides the first complete example of a lossless unitary base change that 

“diagonalizes” a quantum operator using wave manipulation. The implementation of an OAM sorter 

requires precise alignment of the electron microscope and control of two electron optical phase elements. 

However, no simple analytical model can be fitted to an OAM spectrum to measure the control parameters. 

In this paper, we go beyond the proof of principle of our previous work by demonstrating the real time 

application of a neural network to control a transmission electron microscope to achieve fast, reliable and 

stable alignment of the OAM spectrum of an electron beam. Since a large number of electron microscope 

parameters have to be tuned, we anticipate that a similar approach can be used in the future to automate 

other measurements in the TEM, as suggested by LeBeau and colleagues (Xu et al., 2021). In light optics, 

there have already been several examples, both in recent years (Sorokin et al., 2020; Bhusal et al., 2021; Jin 

et al., 2018; Rashidi & Wolkow, 2018) and earlier (Decker, 1993), which showed how machine learning can 

be used for the alignment and experimental tuning of operating parameters. Just as autonomous driving 

has been developed thanks to artificial intelligence, it should be possible to apply similar ideas to automatic 

alignment in electron microscopy. 

Section 2 of the present paper introduces the functioning of the OAM sorter device and the convolutional 

neural network that we use to tune it. As such, it summarises the content of our previous papers (Rotunno 

et al., 2021; Tavabi et al., 2021). In section 3, we discuss the technical details of the interface between the 

CNN and the microscope, which allows for automated operation of the sorting device. To the best of our 

knowledge, this is the first time such a level of automation has been achieved on an electron microscope. In 

section 4, we discuss the performance of the new self-operating setup and present future perspectives. 



 

2- A convolutional neural network for the electron orbital angular momentum sorter 

The CNN that we use to control the TEM has been designed specifically to evaluate the magnitudes of the 

primary parameters that need to be tuned for the alignment of an electrostatic OAM sorter [20,29]. 

Whereas details of the CNN are available in our previous paper [29], key elements such as the network 

structure and type are described below. 

As a reminder, an OAM sorter is a device that is able to analyze the quantum OAM components of a vortex 

beam (Berkhout et al., 2010). In its most general realization, it comprises two phase-modifying elements. 

The first element is referred to as an unwrapper or “sorter 1” (S1), while the second element is referred to 

as a phase corrector or “sorter 2” (S2). The two phase elements must be in Fourier conjugate planes. The 

unwrapper performs a log-polar conformal transformation, which takes the azimuthal phase gradient 

typical of a vortex beam and converts it into a linear phase gradient. It therefore performs a conformal 

coordinate transformation from (𝑥, 𝑦) to (𝑢, 𝑣), where 𝑢 and 𝑣 are coordinates in the Fourier conjugate 

plane of the unwrapper (Berkhout et al., 2010). The phase shift introduced by the unwrapper is given by 

the expression 
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where 𝑘 =
1

𝜆
  is the electron wave vector, 𝑓 is the focal distance between the sorter elements and 𝑠 and 𝐿 

are scaling parameters. The parameter 𝑠 determines the length of the transformed beam, while the 

parameter 𝐿 translates the transformed beam along 𝑢. For an electrostatic sorter, it is defined by the 

length of a charged (or biased) needle that is used as the unwrapper (Berkhout et al., 2010; McMorran, 

Harvey, et al., 2017; Pozzi et al., 2020). 

As the name suggests, the phase corrector corrects for phase inhomogeneities that are introduced by the 

unwrapper and prevents further S1-induced evolution of the electron beam upon propagation. Its phase 

shift is given by the expression 
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We recently used MEMS technology to realize an electrostatic OAM sorter for electron vortex beams [20]. 

In this device, the unwrapper is an electrically-biased needle, while the phase corrector takes the form of a 

series of alternately-biased electrodes. The electrostatic potential on each needle and the electrode can be 

adjusted by using an external voltage source. The value of 𝑠 in Eq. 1 and Eq. 2 can be changed by increasing 

the voltage applied to the needle in sorter 1, which increases the size of the beam in the S2 plane. The 

residual phase of the first element, after the transformation that it imparts to the electron beam, should 

then be matched perfectly by the phase of the second element. However, under the typical working 

conditions of the sorter, as reported in Ref.(Tavabi et al., 2021) and Ref.(Rotunno et al., 2021), the phase 

profiles of the elements vary rapidly in their respective planes. The alignment of the electron beam with 

respect to the second sorter element should therefore be nearly perfect, as a shift of only a few nm can 

already reduce the resolution.  

As described in Ref.(Rotunno et al., 2021), the main misalignments are rotation of the unwrapped beam 

with respect to the phase corrector (β), size mismatch between the unwrapped beam and the periodicity of 

sorter 2 (SM), defocus of the beam prior to being transformed (df), incorrect positioning of the unwrapped 

beam in the phase corrector plane (shift X and Y) and defocus of the equivalent lens after the second 

sorting element. If the defocus is not corrected properly, residual curvature is present in the beam and the 



phase pattern is distorted, resulting in broadening of the beam in the radial direction. The more prominent 

sources of loss in resolution are SM and Shift X/Y. For SM, the electron beam scale in the S2 plane is larger 

(smaller) than the scale dictated by the periodicity of element S2. Since the periodicity of S2 is bound to the 

physical distance between the electrodes and the focal distance between the two elements is fixed by the 

physical distance between them, SM can be corrected by changing the voltage applied to the main needle 

of sorter 1. An indication of SM is the presence of background fringes and a resulting loss of OAM 

resolution. Incorrect positioning (Shift X/Y) results in an asymmetrical background fringe pattern. In a TEM, 

it can be corrected easily with the beam deflectors present between the S1 and S2 planes. 

The tedious and time-consuming alignments of the microscope and sorter elements that are required to 

obtain complete phase compensation and to optimize the sorting resolution in the final spectrum have 

motivated us to develop and connect a CNN to the microscope, in order to allow for fast, precise and 

reliable alignment. 

The CNN is described in Ref.(Rotunno et al., 2021). It takes as input the image of a beam that has 

propagated, in vacuum, after interaction with both sorting elements, as shown in Fig 1a. The beam is a 

featureless, aperture-limited probe, which can be described as an ℓ = 0 electron vortex beam and 

represents the point spread function (PSF) of the Sorter. As such, it is a perfect tool to characterize the 

performance of the sorter. The CNN itself is composed of 13 layers, as shown schematically in Figure 1: an 

input layer (a 128 x 128 pixel image), 5 convolution layer filters (each of which is followed by an average-

pooling layer filter) and two fully connected layers leading to the output, corresponding to a total of 

2,480,326 trainable parameters. The chosen activation function was the rectified linear unit (ReLU), the 

learning algorithm used was Adam (Kingma & Ba, 2014) and the learning rate was 0.001, while the loss 

function was the root mean square difference between the predicted and true misalignment coefficients. 

The CNN was implemented using the Keras library (Gulli & Pal, 2017) and the TensorFlow backend (Abadi et 

al., 2016). It was trained on a database of 20 000 images (+ 2000 images for validation) for random values 

of 6 misalignment parameters. The database was composed entirely of computer-generated images, 

making training of the CNN independent of specific hardware. Therefore, we expect the method to be 

reproducible on any microscope. Details of how the simulated images were obtained are reported in 

Ref.(Rotunno et al., 2021). It should be noted that the CNN did not converge to a correct value without 

accounting for decoherence, which was included by fitting a classical gaussian model directly to the 

experimental images (Dwyer et al., 2010; Grillo & Carlino, 2006), with different values of the coherence 

length used to find the correct one. The best-performing model had a gaussian width of 0.45ℏ in the OAM 

spectrum.  

 



 

Figure 1: (a) Schematic view of a transmission electron microscope electron-optical configuration, 
illustrating (b) control of the TEM through the CNN, whose layout is reported in (c). Further details about the 

network structure can be found in Ref. [29]. 

 

3-Connecting the CNN to the microscope 

In order to achieve real-time automatic alignment, image data from the microscope was fed into the CNN. 

Output from the CNN was converted into control commands, which were fed to the microscope and 

connected devices via application programming interfaces (APIs). The CNN and control loop run on a 

custom python3 script. The control loop can be described by the following steps: 

1. Acquisition of an image using the K2 camera. 

2. Pre-processing of the image. 

3. Determination by the network of the parameters that it expects to perfectly align the sorter. 

4. Application of corrections as changes to the microscope parameters and voltage sources. 

 

3.1-Image data acquisition 

Experiments were performed on an FEI Titan G2 60-300 TEM (Boothroyd et al., 2016) in Forschungszentrum 

Jülich. For data acquisition, a K2 camera was operated in In Situ (IS) mode. A prototype of a K2-IS adapter 

for the LiberTEM-live framework (Clausen et al., 2021) was used to perform continuous data capture and 

analysis at the full data rate of the K2-IS camera (400 fps at 2048 x 1860 pixels). In the present work, sets of 

400 frames were summed to create 1 second exposure images at each control step. In order to work with 

LiberTEM-live, a processing server running the Debian GNU/Linux “Buster” distribution was connected to 

the data switch of the K2 camera using two 10 Gbit network interfaces. The K2 data switch was 

reconfigured to forward all multicast UDP datagrams coming from the K2 digitizers to the processing 

server. The prototype K2-IS adapter receives, decodes and sorts the UDP datagrams and executes arbitrary 



processing and analysis functions (referred to as UDFs in LiberTEM) on this data stream, allowing for fast 

visual feedback and near-real-time feedback loops. The LiberTEM back-end and LiberTEM-live separate 

technical aspects, such as communication with the camera, synchronization and decoding/ re-ordering of 

data streams, from data processing in the UDF. In this way, a UDF can run unmodified on any data stream 

from a LiberTEM-compatible detector or file format. 

 

3.2-Pre-processing 

The recorded images were pre-processed to match images in the training dataset in size and orientation. 

Precise calibration is crucial for the CNN to provide quantitative results. For this purpose, calibration 

spectra were obtained using petal beams (Tavabi et al., 2021), which have known OAM decompositions and 

can be produced easily using synthetic holograms made by focused ion beam milling. A review on this 

subject and on beam shaping using synthetic holograms is available in Ref. (Rosi et al., 2022). 

Once the pixel size of the experimental images had been measured, they could be scaled, cropped and 

normalized over the interval [0, 1] to match the simulations in the training dataset. 

As the model is not rotationally-invariant, rotation of the spectrum also had to be calibrated. Whereas the 

OAM axis is horizontal in the simulations, in the experimental images it is defined by the orientation of the 

second element of the sorter with respect to the camera and by the excitation of the lenses between them. 

As the OAM spectrum is dispersed along a single direction, calibration of the rotation angle is 

straightforward. 

 

3.3-Inference 

The network calculates the corrections that it expects to provide perfect alignment of the sorter. These 

settings are applied relative to the current state of the system. A damping factor and a rate limit are used 

to take calibration errors into account and to manage interdependence between the parameters. As 

demonstrated in our previous work (Rotunno et al., 2021), the network output corrections have a linear 

trend. Damping prevents overshooting of the target by limiting, in most cases, jumps around the 

convergence point. Such jumps are expected since the network was trained with limited resolution. A 

damping factor of 0.4 was used for the beam shift (X/Y) and intensity. A smaller damping factor of 0.2 was 

used for the scaling factor 𝑠 of sorter S1, as it is the most sensitive parameter. 

Custom calibrations were performed to provide a conversion from the damped output of the network to 

the units used by the microscope API. The beam shift (X/Y) had to be flipped in the X and Y directions 

(defined in the sorter 2 plane, where the positive direction of X moves towards S2 and Y is defined such 

that the right-hand rule applies), rotated (because the Cartesian coordinate system of the network is 

rotated with respect to the Cartesian coordinate system of the microscope) and scaled from the network 

output to the microscope units. The excitation values of condenser lens C3 also had to be scaled and an 

offset added to them. This calibration was determined by adjusting the microscope in such a way that the 

effect of the control inputs could be observed relative to the sorter device. 

 

3.4-Instrument control 

Multiple devices were controlled during the experiment. A 16-channel voltage source (Stahl-Electronics DC 

precision voltage source BS-series) was used to power the two sorter devices. The TEM parameters (beam 

shift (X/Y), C3 intensity and other parameters) were controlled via the COM scripting interface of the 



microscope. All of the devices, with the exception of the K2 camera, were controlled using a Tango(Chaize 

et al., 2001) setup, which provides network-transparent control of different devices and encapsulates the 

control details in the Tango device server. After the device server was set up, it could be used by installing a 

Tango client library from any of the supported languages (currently LabView, Matlab/Octave, Java, Python 

and C++, among others) or via a REST API. On the client side, there are no further hardware-specific 

dependencies. 

 

4-Experimental results and discussion 

We performed a series of test runs using the described setup. Figure 2 shows a series of images, in which 

we intentionally started from an incorrect condition and the CNN was then asked to correct the OAM sorter 

PSF. As underlined in Section 3.1, the camera is used to perform continuous data capture to create 

1 second exposure images. Only three of the main alignment parameters that act on the OAM sorter were 

controlled: size mismatch (i.e., voltage applied to the main needle of the unwrapper) and beam shift (X/Y). 

As discussed above, defocus mainly results in a broadening of the beam in the radial direction and it only 

marginally affects the OAM resolution so it was initially neglected 

In frame 000, the sorter PSF before correction is reported. It was achieved by randomly changing the 

controllable parameters from the final configuration achieved in the previous alignment. Due to the 

misalignment, the PSF is not peaked in a sharp spot corresponding to ℓ = 0, but is broad with a diffuse 

background. In the labels, we reported the corrective actions proposed by the CNN. However, as 

mentioned before, only a fraction of it is actually applied. The effect of the correction, despite this 

damping, is clearly evident already in frame 001: the diffuse background is now absent, a clear fringe 

pattern appears instead.. Although the spectrum does not appear to be corrected from frame 001 to frame 

006, close inspection indicates that the number of fringes is decreasing, with the maximum intensity 

jumping between two peaks until it is concentrated primarily in one peak in frame 007, with few fringes 

that have almost disappeared in frame 008. 

It is worth noting that, after few frames, the measured beam shifts are already very low, close to the 

resolution limit of the CNN that we reported in our previous paper. We estimated an absolute error of 1% 

for the defocus and ~35 nm for the beam shifts. From frame 001 to frame 009, the SM aberration is 

corrected slowly due to the smaller damping factor. As a consequence of the correction, the number of 

fringes decreases and the central peak becomes brighter until frame 010, when the intensity is mainly 

concentrated in a single sharp peak with very weak lateral fringes. 

 



 

Figure 2: Experimental image series showing the evolution of an OAM spectrum of an ℓ = 0 beam (the sorter 
PSF) in time as the CNN provides correction values. Each image is a 1 second exposure, with the upper left 
corner showing the frame number (corresponding to a time stamp in seconds from frame 0) and the lower 

left corner showing the correctable alignment parameters estimated by the CNN, which were fed to the 
microscope to generate the images shown in the subsequent frames. The final frame shows in yellow an 

intensity profile obtained from an integrated line scan from the region marked with a dotted white line, in 
which the width of a gaussian profile, which corresponds to twice the standard deviation, takes a value of 

1.68ℏ. The integration region is 21 pixels wide and is centered around the point of maximum intensity. 

We can confirm that the CNN is working efficiently by looking at the behavior of the parameter that is 

commonly used to benchmark an OAM sorter: its sorting resolution. By making use of a prior pixel 

calibration of the OAM sorter PSF image, we systematically measured the sorting resolution in each OAM 

sorter PSF image. Figure 3 shows the time evolution of the sorting resolution and of the values corrected by 

the CNN, which were obtained by re-analysing five OAM sorter PSF image series with the same CNN that 

was used to control the microscope. The data denoted “series 2”, with red square markers, correspond to 

the data shown in Fig. 2. Each of the five series shown in Fig. 3 involved starting from a random condition 

(by using software to randomly change the correctable parameters within the correction range after 

manually correcting the OAM sorter PSF), except for the starting value of the bias applied to sorter 1 (which 

was increased from one series to the next to see if the starting condition of sorter 1 had an effect on the 

final value). In each series, the sorting resolution of a randomly misaligned spectrum usually starts from a 

value higher than 3ℏ (except for series 4) and then quickly goes to a final average value of 1.6ℏ, in some 

cases even going lower and nearing our previously found OAM sorting resolution of 1.5ℏ (marked with a 

solid black line in the graph). 



The three parameters that were corrected reached values of zero (meaning that it was not necessary to 

compensate for them further). This situation was achieved, on average, after 7 frames (corresponding to 7 

seconds). The values then oscillated about zero, while maintaining stable spectra. For most of the series, 

the final stable value of the sorter 1 bias was 5.9 V, while for a couple of them it was 6.05 V, which is within 

the 2% tolerance that was defined in the previous paper (and therefore the degree of accuracy of the 

network). The sorting resolution in the five different series shown in Fig.3 improves as the three 

parameters are corrected, until it reaches a final value that is on average 1.6ℏ. Just as for the three 

parameters that are being corrected, the sorting resolution reaches a stable value of 1.6ℏ on average after 

7 iterations, i.e., 7 seconds. 

 

Figure 3: Behaviour of OAM sorting resolution and CNN output for different alignment series as a function of 

frame number, showing the size mismatch and beam shift (X/Y). The OAM sorting resolution tends to an 

average value of 1.6ℏ, while each parameter tends to zero after a few iterations. In the panel in which the 

trends of the sorting resolution are reported, the solid black line corresponds to the sorting resolutionthat 

was measured previously using manual alignment(Tavabi et al., 2021), while the dotted line represents the 

theoretical limit of the sorting resolution of our system. 

Each additional degree of freedom managed by the CNN complicates the remote control system of the 

microscope. Therefore, we initially extended control over the parameters that are known to be most 

effective, i.e., the beam shifts and the potential applied to sorter 1 (SM in our compact notation). This level 

of correction gave us the 1.68ℏ resolution reported in Fig. 2. Figure 3 further confirms that, by only 

correcting three parameters, the sorting resolution can only go down to approximately 1.6ℏ This accuracy 

is very close to that achieved by a human operator (1.5ℏ reported in Ref.(Tavabi et al., 2021)). It motivated 

us to increase the complexity of the control system by adding a fourth correctable parameter: the 

excitation of the condenser lens known as C3 (df in our notation), which was intentionally neglected in the 

first experiment due to its smaller effect on the sorting resolution. Figure 4 shows an image series that 

illustrates how the OAM sorter PSF is corrected and improved over time. 

 



 

Figure 4: Experimental image series showing how the OAM sorter PSF  evolves in time as the CNN provides 
correction values for size mismatch, beam shift (X/Y) and defocus. An initial “wrong” OAM sorter PSF was 
corrected by the CNN. The final frame shows (in yellow) the intensity profile obtained from an integrated 
linescan from the region marked with a dotted white line, in which the width of a gaussian profile, which 

corresponds to twice the standard deviation, takes a value of 1.48ℏ. 

 

It is interesting to observe how robust the CNN is in Fig. 4. In the second frame, either there was a problem 

during image acquisition due to the beam being near to the border of the K2 sensor or the spectrum was 

corrected incorrectly. However, from the third frame the CNN is able to recover (even though it was fed 

with only partially correct data from the previous frame) and gradually compensates for the misalignments 

until it reaches a stable condition. 

The measured sorting resolution in the final frame of Fig. 4 is determined to be approximately 1.5ℏ, which 

is comparable to the state-of-the-art resolution achieved by a human operator in Ref. (Tavabi et al., 2021). 

This is a remarkable result, since the software-guided alignment takes only a few seconds and is then able 

to keep this condition stable, thereby overcoming possible device or microscope instabilities. In contrast, an 

operator with prior experience in OAM sorter alignment usually requires several minutes to reach a 

comparable result, thus allowing also less experienced users to use this technology. Furthermore, 

conventional lens aberrations have not been considered so far, even though they also affect the resolution. 

Control over more TEM parameters is necessary for further improvement of the sorting resolution. 

Moreover, as previously mentioned, the CNN was trained on simulated images that are based upon an ideal 

mathematical model of the sorter, resulting in limited accuracy of the network when applied to a real 

situation. Refinement of the network by training it directly at the microscope using reinforcement learning 



schemes is expected to reduce the number of frames that is required to tune the device. Improvements in 

tuning speed will allow live correction of misalignments without the user noticing the adjustments. 

It should be noted that the theoretical limit of the sorter system is fixed at 1ℏ. Considerable overlap 

between adjacent components is expected and can only be improved by changing the design of the two 

phase elements(Mirhosseini et al., 2013). Forthcoming generations of sorters will be more complicated 

than the present one, will offer more degrees of freedom and will consequently be harder to work with. 

We anticipate that the proposed automatic alignment procedure will be greatly beneficial, also in view of 

future developments of the technique. 

 

5. Conclusions 

In this paper, a convolutional neural network has been used to directly (i.e., without intervention of the 

operator) control the hardware part of the optical system of a transmission electron microscope and an 

external generator that controls a programmable electrostatic phase plate operated as an orbital angular 

momentum sorter. The neural network is robust enough to correct for misalignments that affect the 

experimental OAM spectrum, even though it was trained on simulated spectra. It can also be used to 

overcome unexpected events, such as a sudden change in defocus. Tuning of the microscope optics and 

external power supply takes on average less than 10 s for full correction of a spectrum, providing a final 

orbital angular momentum resolution of approximately 1.5ℏ. This is a major improvement over manual 

correction by the microscope operator, which typically takes several minutes and requires prior experience. 

The neural network achieves the same resolution as that obtained by manually tuning the microscope 

when the same number of parameters is acted upon. The advantage is that the alignment is performed 

reproducibly in a few seconds, instead of the tens of minutes that are required for manual tuning. 

Moreover, since the OAM sorting system is not simple to tune, our automatic alignment procedure enables 

less experienced users to use this technology. In principle, this approach can be extended to other devices 

in the column, including correctors and monochromators, in the future. 
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APPENDIX 

Appendix A: Settings for live processing of K2 IS data 

In order to ensure proper communication and reliable data delivery, several network and Linux kernel 

parameters must be properly tuned: 

https://doi.org/10.5281/zenodo.5715058
https://doi.org/10.5281/zenodo.6420912


 As the UDP datagrams are encapsulated into ethernet jumbo frames, an appropriate MTU needs to 

be set, for example 9000. Failure to do so will result in an increase in rx_length_errors statistics in 

the output of ethtool -S <ifname>; 

 The UDP datagrams arrive as multiple IP fragments, which need to be assembled into whole 

packets by the operating system. Without adjusting the system defaults, this process may require 

too much memory and result in dropped frames. The available buffer memory can be changed by 

writing to /proc/sys/net/ipv4/ipfrag_high_thresh. A suitable process involves the observation of 

assembly failures under load with netstat -s | grep -i assem and increasing the fragmentation 

threshold until they no longer appear. 

 Under high load, it is possible that the UDP receives a buffer overflow, which is another possible 

cause of dropped packets and can be observed via netstat -s, where the "receive buffer errors" 

counter will increase. For the individual sockets, it can be observed by tracking the d column in ss -

unlp -m -A udp. In order to decrease the likelihood of dropped packets, it is possible to resize the 

buffers by increasing /proc/sys/net/core/rmem_default and /proc/sys/net/core/rmem_max.  

 Depending on the network hardware, it can be beneficial to set up RX (receive) queue hashing, in 

order to better distribute the network load across multiple CPU cores. For example, on supported 

network hardware, by using ethtool -N <ifname> rx-flow-hash udp4 sdfn the received network 

traffic is routed to different RX queues and therefore different CPU cores, depending on the source 

IP address, the destination IP address, the source port and the destination port (Herbert & de 

Bruijn, n.d.). 
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